Department of Computer Science and Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong
Authors:Hao Chen, Huang-Jing Lin, Qi Dou, and Pheng-Ann Heng
Abstract:In this ISBI challenge, we developed a multi-scale deep contextual network for automatic metastasis detection. Taking advantage of powerful feature representation and end-to-end learning framework, multi-level contextual information were explored by deep supervision. We first search the regions of interest with threshold, then segment the metastasis masks utilizing the deep contextual network, a variant of fully convolutional network. Moreover, we extend it into multi-scale resolutions, hence the results can be further improved.
Results:The following figure shows the receiver operating characteristic (ROC) curve of the method.
The following figure shows the free-response receiver operating characteristic (FROC) curve of the method.
The table below presents the average sensitivity of the developed system at 6 predefined false positive rates: 1/4, 1/2, 1, 2, 4, and 8 FPs per whole slide image.
FPs/WSI | 1/4 | 1/2 | 1 | 2 | 4 | 8 |
Sensitivity | 0.404 | 0.471 | 0.493 | 0.582 | 0.631 | 0.684 |